Quasi-isometries and Rigidity of Solvable Groups

نویسندگان

  • ALEX ESKIN
  • KEVIN WHYTE
چکیده

In this note, we announce the first results on quasi-isometric rigidity of non-nilpotent polycyclic groups. In particular, we prove that any group quasiisometric to the three dimenionsional solvable Lie group Sol is virtually a lattice in Sol. We prove analogous results for groups quasi-isometric to R⋉Rn where the semidirect product is defined by a diagonalizable matrix of determinant one with no eigenvalues on the unit circle. Our approach to these problems is to first classify all self quasi-isometries of the solvable Lie group. Our classification of self quasiisometries for R⋉Rn proves a conjecture made by Farb and Mosher in [FM3]. Our techniques for studying quasi-isometries extend to some other classes of groups and spaces. In particular, we characterize groups quasi-isometric to any lamplighter group, answering a question of de la Harpe [dlH]. Also, we prove that certain Diestel-Leader graphs are not quasi-isometric to any finitely generated group, verifying a conjecture of Diestel and Leader from [DL] and answering a question ofWoess from [SW,Wo1]. We also prove that certain non-unimodular, nonhyperbolic solvable Lie groups are not quasi-isometric to finitely generated groups. The results in this paper are contributions to Gromov’s program for classifying finitely generated groups up to quasi-isometry [Gr2]. We introduce a new technique for studying quasi-isometries, which we refer to as coarse differentiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasi-isometric rigidity of solvable groups

In this article we survey recent progress on quasi-isometric rigidity of polycyclic groups. These results are contributions to Gromov’s program for classifying finitely generated groups up to quasi-isometry [Gr2]. The results discussed here rely on a new technique for studying quasi-isometries of finitely generated groups, which we refer to as coarse differentiation. We include a discussion of ...

متن کامل

Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings

for all x ∈ X . Quasi-isometries occur naturally in the study of the geometry of discrete groups since the length spaces on which a given finitely generated group acts cocompactly and properly discontinuously by isometries are quasi-isometric to one another [Gro]. Quasi-isometries also play a crucial role in Mostow’s proof of his rigidity theorem: the theorem is proved by showing that equivaria...

متن کامل

The Large Scale Geometry of the Higher Baumslag-solitar Groups

BS(m,n) =< x, y|xyx = y > are some of the simplest interesting infinite groups which are not lattices in Lie groups. They have been studied in depth from the point of view of combinatorial group theory. It is natural to ask if the geometric approach to the theory of infinite groups, which has been so successful in the study of lattices, can yield any insights in this nonlinear case. The first s...

متن کامل

Quasi - Isometric Rigidity for Psl

1. Introduction. Combining the work of many people yields a complete quasi-isometry classification of irreducible lattices in semisimple Lie groups (see [F] for an overview of these results). One of the first general results in this classification is the complete description, up to quasi-isometry, of all nonuniform lattices in semisimple Lie groups of rank 1, proved by R. Schwartz [S1]. He show...

متن کامل

Coarse differentiation and quasi-isometries of a class of solvable Lie groups I

This is the first of two papers (the other one being [P]) which aim to understand quasiisometries of a subclass of unimodular split solvable Lie groups. In the present paper, we show that locally (in a coarse sense), a quasi-isometry between two groups in this subclass is close to a map that respects their group structures.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005